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Abstract  —  A systematic design procedure for coupled 
resonators cavity group delay equalizers is presented.  The 
procedure consists of solving the approximation problem by 
optimization and solving the synthesis problem.  The error 
function for the optimization is computed from filter’s group 
delay and the zeros and poles of the input impedance of the 
equalizer.  Convergence of the optimization is fast and insen-
sitive to the initial guess even when the number of resonators 
is large.  Two examples together with experimental results 
are presented to show the powerfulness and effectiveness of 
the proposed procedure. 

I. INTRODUCTION 

Microwave bandpass networks together with equaliza-
tion circuitry are essential components in modern commu-
nication systems such as satellite communication systems.  
Conventional realizations of group delay equalizers are 
mostly limited to all-pass C-sections (all-pass first-order) 
and all-pass D-section (all-pass second-order) networks 
cascaded with circulators or 3-dB hybrids.  Graphical 
methods are used to determine the suitable locations of ze-
ros of an equalizer followed by Richards’ synthesis proce-
dure to complete the design [1], [2].  This approach works 
well when the amount of equalization required is small.  
When a larger amount of equalization is needed, several 
C- or D-section equalizers may be required in cascade, 
which makes the design of such equalizers difficult. 

A design method for equalizers with multiple coupled 
cavities was first presented in 1982 [3].  Direct network 
optimization has been used in [3], where the coupling ma-
trix elements are the optimization variables and the differ-
ence between the group delay response of the equalizer 
and the frequency specification mask is the basis for the 
objective error function.  Optimization routines or avail-
able commercial software packages may be used to solve 
for all the optimization variables by minimizing the objec-
tive error function over the frequency band of interest.  
The design method proposed in [3] showed two major ad-
vantages over the conventional approach: (1) a single 
equalizer with multiple poles is able to perform a larger 
degree of equalization that provides a considerable hard-
ware weight reduction over the conventional approach of 
using several cascaded C- or D-sections and (2) equalizer 
parameters are directly generated through the optimization 

process which eliminates the synthesis step, making the 
design procedure straightforward.   

However, the approach proposed in [3] is usually ineffi-
cient and often results in non-optimum (local minimum) 
solutions.  Moreover, the convergence of numerically 
minimizing the objective error function will depend 
strongly on the initial guess of the equalizer parameters 
(optimization variables), especially when the number of 
cavities is large.  In this paper, a systematic design proce-
dure is presented.  This new and powerful design proce-
dure basically consists of two separate steps : (1) solving 
the approximation problem through numerical optimiza-
tion and (2) solving the synthesis problem.  The objective 
error function used for solving the approximation problem 
is based on evaluating the group delay response using the 
zeros and poles of the input impedance function of the 
structure.  Convergence of the optimization of proposed 
design method is fast and nearly independent of the initial 
guess of zeros and poles locations even when the number 
of the cavities is large.  Once the locations of zeros and 
poles are determined, a synthesis procedure is then carried 
out to complete the design.  Detailed design procedure 
will be presented in Section II including the problem 
statement and circuit analysis.  A straightforward synthe-
sis procedure is presented in Section III.  To show the 
powerfulness of the proposed design method, two numeri-
cal examples are given in section IV, with experimental 
results of an 8-pole elliptic function filter and 3-pole 
equalizer included. 

II. THE APPROXIMATION PROBLEM 

Consider a circulator coupled filter-equalizer network as 
shown in Fig. 1.  Since the total group delay of the net-
work is the sum of the group delay of the filter and the re-
flection delay of the equalizer, ideally the delay character-
istics of the equalizer should be the inverse of the  

 
 
 
 

 

Fig. 1. Circulator coupled filter-equalizer network. 
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Fig. 2. Lumped circuit representation for an n-cavity narrow-band equalizer. 

 
filter’s to compensate for the steep change at the edges of 
the band.  The delay of the equalizer is the delay charac-
teristic of the reflection coefficient of a short-circuited 
coupled resonators filter [4]-[6].   

Fig. 2 shows the equivalent lumped circuit representa-
tion for a short-circuited coupled resonators narrow band 
equalizer.  Although this equivalent circuit is accurate 
only over a narrow bandwidth (<20%), it is usually suffi-
cient in most applications where large amount of equaliza-
tion is only required over a narrow bandwidth.  The input 
impedance of the equalizer can be obtained as: 
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1 ωQ are monic polynomials of order n and 
(n-1), respectively; 111 1 CLo =ω  is the resonant fre-
quency of the first resonator and 111 CLZo =  is the char-
acteristic impedance of the first resonator.  The input re-
flection coefficient of the equalizer can be readily ex-
pressed as: 
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The group delay of the equalizer, by definition, is the 
negative derivative of )(ωφ  with respect to ω .  Noting the 
fact that the input impedance (1) is purely reactive, the 
group delay of the equalizer can then be easily derived as: 
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, where 1P′ and 1Q′ denote the derivatives of 1P and 1Q with 
respect to ω , respectively.  When the network shown in 
Fig. 2 is near the optimum approximation to the require-
ment, )( 2

1 ωP and )( 2
1 ωQ can be expressed as: [4],[6] 
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In the above expressions, ),,2,1( nizi K=ω and 
)1,,2,1( −= njpj Kω are zeros of 1P and 1Q , corresponding 

to the zeros and poles of the input impedance function re-
spectively. 

The approximation problem can be stated as follows:  
Given a certain requirement on the group delay (frequency 
specification mask) to be met by the proposed network, 
determine the locations of the zeros and poles of the input 
impedance function of the equalizer that realize the de-
sired group delay characteristic.  The approximation prob-
lem is solved numerically through optimization.  The op-
timization procedure starts by an initial guess for the loca-
tions of zeros and poles.  A simple initial guess will be 
taking the initial placement of the zeros and poles to be al-
ternating, and equally distributed over the desired band-
width. The objective error function is defined as: 
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with EF ττ , : group delay of filter and equalizer, 
minτ    : the minimum of total group delay (constant), 
maskT  : required frequency specification mask. 

In the above expression, Eτ and minτ are evaluated from the 
current placement of the zeros and poles.  A standard gra-
dient constrained search minimization algorithm is used to 
minimize the objective error function since the locations 
of the zeros and poles are known to be interlaced in the vi-
cinity of the band of the network, i.e., 

nznpnzpzpz ,1,1,2211 ωωωωωωω <<<<<<< −−L .  Con-
vergence of the minimization is fast resulting from the 
constrained nature among the optimization variables.  In 
most cases, we have symmetry with respect to the center 
frequency which speeds up convergence dramatically 
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since only half the number of optimization variables is 
necessary for optimization. 

III. SYNTHESIS OF EQUALIZER 

After solving the approximation problem, the exact lo-
cations of the zeros and poles that realize the required 
group delay characteristic of the network are known.  To 
complete the design, a synthesis procedure is adopted to 
extract the equalizer parameters from the knowledge of 
the locations of zeros and poles of the network.   

Using the same notations as defined in Fig. 2, the input 
impedance at loop i can be obtained as: 
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where iioi CL1=ω  is the resonant frequency of resonator 
i and iioi CLZ =  is the characteristic impedance of the ith 
resonator.  The monic polynomials )( 2ωiP and )( 2ωiQ are 
expressed as: [6] 
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Since the circuit model of Fig. 2 is an accurate representa-
tion over a narrow bandwidth as discussed previously, the 
coupling coefficients between two adjacent resonators 

1, +iik  can be modeled as frequency independent reactance 
and can be defined as: 
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The coupling bandwidth 1, +iim  is then defined as: 
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and is the coupling coefficient in frequency unit.  The fol-
lowing recursive relations can be derived from basic cir-
cuit theory: 
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(14) and (15) give explicit relations between the equalizer 
parameters and the locations of zeros and poles.  Thus, 
synthesis of the equalizer can be completed from 
(12)~(15) after solving for the locations of zeros and poles 
from the approximation problem. 

IV. NUMERICAL EXAMPLES 

A computer program has been developed to solve the 
approximation problem through optimization and perform 
the synthesis of the equalizer as described.  Convergence 
of the optimization is fast and in all cases tested is nearly 
independent of the initial placement of the zeros and 
poles.  In contrast, direct network optimization using an 
error function based on the difference between the mask 
and response was slow, often did not converge to any ac-
ceptable solution, and in all cases required an initial guess 
whose response was close to the desired one in order to 
converge, especially when the number of cavities is large. 

Many design examples have been run to verify and test 
the program.  Two of these examples are summarized in 
Table I.  In both cases, the initial placement of the zeros 
and poles is taken to be equally distributed in the vicinity 
of the bandwidth of the network.  Fig. 3(a) and (b) show 
the simulated response of the total group delay (filter and 
equalizer) after solving the approximation problem.  The 
frequency specification masks are also included in both 
figures.  Fig. 4 shows the in-band group delay of the over-
all structure including the filter and the equalizer for de-
sign (a).  Two different circulators are used for cascading 
the filter and the equalizer.  The thinner line denotes the 
one using an ideal circulator with infinite isolation while 
the thicker one denotes the one using a non-ideal circula-
tor with 28dB isolation.  It is clear that the isolation of the 
circulator will have pronounced effect on the ripple of the 
final response.    

A 3-cavity equalizer has been built according to design 
(a) to equalize an 8-pole elliptic function filter.  Fig. 5 
shows the measurement results.  A circulator with 28dB 
isolation was used in the experiment, and the measured re-
sults agreed well with simulation. 

TABLE I 
SUMMARY OF TWO DESIGN EXAMPLES 

Network  
Structure 

Start 
Error 

Final 
Error 

Optimized 
Response 

(a) 8-pole filter cascaded 
     with n=3 equalizer 

3.1e04 1.3e-5 Fig. 3(a) 

(b) 16-pole filter cascaded 
 with n=12 equalizer 

1.4e06 3.5e-4 Fig. 3(b) 

V. CONCLUSION 

A powerful and systematic method for the design of 
coupled cavity group delay equalizers is introduced.  This 
method consists of solving the approximation problem by 
optimization and synthesis of the network parameters.  
The presented method is insensitive to the initial guess of 
the locations of zeros and poles, and converges fast even 
when the number of cavities is large.  Typical examples 
together with measurement results of practical equalizers 
are given which show the effectiveness and powerfulness 
of the method. 
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Fig. 4. The simulated final response of in-band group de-
lay for design (a).  The unloaded Q for the equalizer is set to 
be 3500.  The responses for using both ideal (thinner line) 
and non-ideal (thicker line) circulator are included for com-
parison. 

Fig. 3. Group delay response after optimization for design 
(a) and (b), respectively.  In both plots, the four curves de-
note, from top to bottom, the spec. mask, total group delay, 
group delay of equalizer and group delay of filter. 

(a) 

                                                   (b) 
Fig. 5. Measured group delay and insertion loss of (a) filter 
only and (b) filter and equalizer for an 8-pole elliptic function fil-
ter and a 3-cavity equalizer (design (a)).  The non-idealness of 
the circulator used contributes for the ripple of the response. 
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